Structure and Magnetic Behavior of the Na₂NilnF₇ Weberite

G. FRENZEN, W. MASSA, AND D. BABEL

Fachbereich Chemie und Wiss. Zentrum für Materialwissenschaften der Universität Marburg, Germany

AND N. RUCHAUD, J. GRANNEC, A. TRESSAUD, AND P. HAGENMULLER

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France

Received July 18, 1991; in revised form October 30, 1991

The indium weberite Na₂NiInF₇ has been synthesized in the form of single crystals. The symmetry of the unit cell is orthorhombic: a = 7.356(1) Å, b = 10.334(2) Å, and c = 7.5231(1) Å, with space group *Pmnb*, Z = 4. The structure has been determined using 831 independent reflections (R = 0.026, $R_w = 0.017$). It is isostructural with Na₂CuCrF₇ and Na₂CuInF₇. Parallel [NiF₃]_{3ⁿ}ⁿ⁻ octahedra chains run along the [100] axis separated by In atoms with octahedral coordination (In-F = 2.083 Å) with a seventh further atom at 2.730 Å. The sodium atoms are 7- and 8-coordinated. The expected one-dimensional magnetic behavior has been confirmed, with a 3D-ordering temperature $T_N = 9$ K. Below this temperature, a weak ferromagnetic component is observed. © 1992 Academic Press, Inc.

Introduction

Following the structural determination of the mineral weberite Na₂MgAlF₇ carried out a long time ago (1), a lot of investigations have been devoted to homologous quaternary fluorides $Na_2 M^{II} M^{III} F_7 (1-7)$. In those compounds the M^{2+} cations are arranged in chains of $[M^{II}F_6]$ octahedra sharing transvertices; these chains are interconnected by $[M^{III}F_6]$ units to form a three-dimensional network. Most of these fluorides exhibit an orthorhombic cell. However, a trigonal symmetry has been encountered in the $Na_2MnM^{III}F_7$ series, probably favored by the presence of larger Mn^{2+} ions (8, 9), whereas other structural arrangements are observed for copper compounds (10-12).

Some ambiguities remain concerning the space group of the orthorhombic weberites, but they have been removed for some phases such as the frustrated magnetic compounds Na₂NiFeF₇ (13). But since slightly different structures had been observed in the Mn²⁺-based series, it seemed possible therefore that new modifications could result also from the presence of bigger trivalent cations in the octahedral sites.

Such an assumption encouraged us to achieve the structural investigation of Na₂NiInF₇. Another interest arising from the presence of large diamagnetic In^{3+} ion was in modifying the dimensionality of the magnetic sublattice and producing quasiisolated magnetic nickel (II) chains. This paper is thus devoted to the structural determi-

Crystallographic Char Conditions of Data	Interatomic Distances (Å) and Bond Angles (°) in Na_2NiInF_7					
Crystal data		Ni-F1	2× 1.951(1)	In-F4	2.047(3)	
Formula, M	Na ₂ NiInF ₇ , 352.5	Ni-F5	$2 \times 1.992(2)$	In-F3	2.075(3)	
Space group	Pmnb, Z = 4	Ni-F6	$2 \times 2.004(2)$	In-F6	$2 \times 2.085(2)$	
Lattice constants ($\rho_c = 4.09$	a = 7.356(1) Å			In–F5	$2 \times 2.103(2)$	
$\mathbf{g}\cdot\mathbf{cm}^{-3}$)	b = 10.334(2) Å	Ni–F avera	ge: 1.983	In-F avera	F average: 2.083	
	c = 7.523(1) Å			In-F1	2.730(3)	
	V = 571.9 Å	Na1-F3	$2 \times 2.349(2)$	Na2–F4	2.211(3)	
Data collection		Na1-F4	$2 \times 2.461(2)$	Na2–F3	2.277(3)	
Radiation	ΜοΚα	Na1-F6	$2 \times 2.673(2)$	Na2–F6	$2 \times 2.388(2)$	
2θ range (°)	4-60	Na1-F5	$2 \times 2.734(2)$	Na2-F1	2.412(2)	
Scanning mode	ω-scan			Na2–F5	$2 \times 2.524(2)$	
Scan angle (°)	$0.9 + 0.35 \tan \theta$	Na1-F average: 2.554		Na2–F average: 2.389		
Measurement range	-10 < h < 10					
	-10 < k < 10	F1-Ni-F6	82.5/97.5(1)	F1–In–F3	109.8(1)	
	0 < l < 10	F1-Ni-F5	83.8/96.2(1)	F1–In–F4	74.9(1)	
Reflections		F5-Ni-F6	86.3/93.7(1)	F1-In-F5	131.2(1)	
Measured	3206			F1–In–F6	63.8(1)	
Symmetry independent	877			F3–In–F4	175.4(1)	
Used in refinement	831			F3–In–F5	93.8(1)	
$[F_0 > 3\sigma (F_0)]$				F3–In–F6	83.5(1)	
Absorption coefficient	$\mu = 71.2 \text{ cm}^{-1}$	Ni-F1-Ni	141.1(2)	F4InF5	82.8(1)	
Extinction coefficient	$\varepsilon = 7.5 \times 10^{-8}$	Ni-F6-In	117.8(1)	F4–In–F6	98.9(1)	
		Ni-F5-In	142.4(1)	F5-In-F5	86.7(1)	
				F5–In–F6	78.1/164.2(1)	

TABLE I

TABLE III

nation and magnetic study of this new indium weberite.

Experimental

Polycrystalline samples of Na₂NiInF₇ were prepared by solid state interaction of a stoichiometric mixture of the elementary

Note. Standard deviations are given in parentheses.

F6-In-F6 116.9(1)

fluorides. After mixing in a glove box, the starting materials were introduced into a platinum tube which was sealed under dry argon. The reaction was carried out at 600°C for 15 hr. After grinding in a dry atmosphere

TABLE II

FINAL ATOMIC COORDINATES AND ANIS	otropic Temperature Factors in $Na_2NiInF_7^a$
-----------------------------------	--

Atom	Position	x	у	z	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Na1	46	0	0	0.5	0.022(1)	0.026(1)	0.044(1)	0.002(1)	0.003(1)	-0.004(1)
Na2	4 <i>c</i>	0.25	0.2323(2)	0.2475(2)	0.0215(8)	0.0243(8)	0.018(1)	0.0022(8)	0	0
Ni	4 <i>a</i>	0	0	0	0.0074(2)	0.0100(2)	0.0110(3)	-0.0003(2)	-0.0009(2)	-0.0011(2)
In	4 <i>c</i>	0.25	0.23484(3)	0.76607(4)	0.0097(1)	0.0147(1)	0.0145(2)	-0.0026(1)	0	0
Fl	4 <i>c</i>	0.25	0.0575(3)	0.0350(4)	0.007(1)	0.040(2)	0.056(2)	-0.027(2)	0	0
F3	4 <i>c</i>	0.25	0.3415(2)	-0.0050(3)	0.028(1)	0.019(1)	0.013(1)	-0.001(1)	0	0
F4	4 <i>c</i>	0.25	0.1404(2)	0.5227(3)	0.023(1)	0.023(1)	0.017(1)	-0.004(1)	0	0
F5	8 <i>d</i>	-0.0556(2)	0.1299(2)	0.1880(3)	0.019(1)	0.022(1)	0.027(1)	-0.0114(8)	-0.0036(8)	0.0015(7)
F6	8 <i>d</i>	0.0063(2)	0.1323(2)	0.8053(3)	0.021(1)	0.021(1)	0.023(1)	0.0090(8)	-0.0016(8)	-0.0038(7)

^a Note. Estimated standard deviations are given in parentheses.

A list of the calculated and observed structure factors may be obtained on request from one of the authors (W.M.).

FIG. 1. Stereoview of the structure of Na_2NiInF_7 showing the ordering of the coordination polyhedra in the unit cell [ORTEP drawing (16)].

the mixture was annealed for 24 hr in the same conditions in order to eliminate possible traces of Na_3InF_6 and NiF_2 . The thermal process was ended by a temperature quenching.

In a second step single crystals were obtained by melting the sample at 810°C and by cooling down to room temperature at a 3°C/hr rate. A spherical crystal of about 0.1 mm diameter was selected for the structure determination. Preliminary Weissenberg and precession photographs using CuK α and MoK α radiations, respectively, showed the symmetry to be orthorhombic; the systematic extinctions were consistent with the *Pmnb* space group.

The unit-cell parameters were refined from 55 reflections on the powder diffraction pattern by a least-squares method. The intensities, collected on an automatic fourcircle Enraf Nonius CAD4 diffractometer, were corrected for Lorentz and polarization effects, followed by an absorption correction. Table I reports the crystallographic characteristics of the crystal and the experimental conditions of data collection.

Structural Determination and Refinement

All calculations were performed using SHELX programs (14). Atomic scattering factors and anomalous dispersion corrections were taken from the "International Tables for X-Ray Crystallography" (15).

Starting from the atomic positions given by Kummer *et al.* for Na₂CuCrF₇ (10), the refinement rapidly converged down to a residual R = 0.026 ($R_w = 0.017$) for 831 reflections, with anisotropic thermal parameters. Table II presents the final results for the nine independent positions. Characteristic distances and angles are given in Table III.

Description of the Structure

Figure 1 represents a stereoview of the Na_2NiInF_7 structure, showing the way the

FIG. 2. Comparison of the linking of $(NiF_6)^{2-}$ and $(M^{III}F_6)^{3-}$ octahedra in Na_2NiInF_7 (a) and in Na_2NiAlF_7 (b).

polyhedra are linked in the network. As listed in Table III, the average Ni–F bond length is of the same order of magnitude as those found for Na₂NiCrF₇ (7) and Na₂Ni FeF₇ (5, 13).

The new peculiarity of this indium compound is the symmetry lowering, which is unusual in the absence of a Jahn-Teller-type ion. Such a result may be related to the value of the $r(M^{2+})/r(M^{3+})$ ratio of the M^{2+} and M^{3+} ionic radii; whereas in the previously investigated orthorhombic weberites this ratio is larger than unity, it is significantly lower in the present case: $r(Ni^{2+})/r(In^{3+}) \approx$ 0.86 (17). As a consequence, the intrachain Ni-Ni distance reaches 3.678 Å in Na₂Ni InF₇, whereas it is equal for example to 3.617 Å in Na₂NiFeF₇ (13).

The large size of trivalent indium disturbs the octahedral environment of nickel due to bridging by the F5 and F6 atoms (Fig. 1). As a consequence the F1 fluorine atom linking two neighboring nickel octahedra becomes closer to the indium polyhedron. Indium adopts therefore an octahedral coordination (In-F = 2.083 Å) with a seventh further fluorine atom at 2.730 Å. The In-F1 distance, although still relatively large (2.73 Å), is indeed much shorter than the corresponding M^{III} -F1 length usually encountered in other weberites (M^{III} -F1 > 3 Å). Such a peculiarity results from a different tilting of the chains in z = 0 and $z = \frac{1}{2}$. Figure 2 compares the way in which the octahedra are connected in Na₂NiInF₇ and Na₂NiAlF₇ (18).

The Na1 atom exhibits a eightfold coordination as previously mentioned in orthorhombic and trigonal weberites. Two distances (Na1-F3 = 2.349 Å) are shorter than the sum of Shannon's radii (for Na⁺ with C.N. = 8) (17) which corresponds to 2.51 Å. Such values are, however, larger than some of those observed in distorted hexagonal bipyramid environments: for example apical Na-F distances of 2.111 and 2.124 Å are found in the trigonal Na₂MnCrF₇ (9) and Na_2MnFeF_7 (8), respectively, whereas 2.215 Å is observed for the shortest Na1-F2 axes in the orthorhombic Na_2NiFeF_7 (13). But the distance deviation is smaller for Na_2NiInF_7 and the polyhedron around the Na1 atom can be considered as a distorted prism.

In contrast, the Na2–F average distance is considerably smaller than the former one, with the two shortest distances Na2–F3 = 2.277 Å and Na2–F4 = 2.211 Å. The polyhedron surrounding the Na2 atom can, therefore, be ascribed to a pentagonal bipyramid, as shown in Fig. 3. Such a NaF₇ coordination thus differentiates Na₂NiInF₇ from the previously studied weberites.

In comparison with the "normal" weberite Na₂NiFeF₇, Na₂NiInF₇ has lost the I-centering, but the general arrangement of the orthorhombic network is maintained: $[M^{II}F_5]_n^{3n-}$ chains are formed, constituted of

FIG. 3. Stereoview of the distorted polyhedra surrounding Na1 and Na2 atoms in Na2NiInF7.

 $[M^{II}F_6]$ octahedra sharing *trans*-vertices, parallel to the [100] direction (Fig. 4).

Magnetic Investigation

The magnetic measurements were carried out on a powder sample using a Faradaytype balance in the 4 to 300 K temperature range and a SQUID magnetometer down to 2 K.

A linear dependence of the reciprocal susceptibility is obtained for temperatures higher than about 100 K (Fig. 5). The molar Curie constant $C_{\rm M} = 1.20$ is quite similar to those obtained for Ag₂NiInF₇ ($C_{\rm M} = 1.19$)

(20) and is very close to the calculated spinonly value ($C_{\rm M} = 1$). The extrapolated paramagnetic Curie temperature is $\theta_{\rm p} = -35 \pm 2$ K. For temperatures lower than 100 K the departure from the Curie–Weiss straight line illustrates clearly a low-dimensional magnetic behavior. Since highly isotropic ions (Ni²⁺) are involved, the intrachain exchange constant has been calculated from a Heisenberg isotropic Hamiltonian with the usual convention of a negative J value corresponding to antiferromagnetic interactions. Initially determined for $S = \frac{1}{2}$, the susceptibility calculations have been further extended to higher spin values. For antiferromagnetic Heisenberg chains of finite lengths, Fisher and Weng have proposed a more general equation (21, 22). In these conditions, for a chain with spins S = 1, the estimated value is $J/k = -24 \pm 2$ K. It may be compared to that found for Na₂NiAlF₇ ($J/k = -11 \pm 2$ K) (Fig. 5).

At low temperature a three-dimensional ordering appears which is characterized by the occurrence of a weak spontaneous magnetization σ_0 . The ordering temperature has been determined for vanishing values of σ_0 . The antiferromagnetic ordering temperature of Na₂NiInF₇ is $T_N = 9$ K; this value, lower than those observed for Na₂NiAlF₇ ($T_N =$ 12 ± 2 K as shown is Fig. 5) or Na₂FeAlF₇ ($T_N = 19 \pm 1$ K) (3), results probably from the presence of the bigger In³⁺ cation which increases the distance between two chains, reducing consequently the interchain magnetic interactions.

In Fig. 5 the temperature dependence of the zero-field magnetization is also repre-

FIG. 4. Perspective view of Na₂NiInF₇ showing the $[NiF_{5}]_{2}^{3n-}$ chains. $(InF_{6})^{3-}$ octahedra are shaded and $(NiF_{6})^{4-}$ octahedra are not [STRUPLO program (19)].

FIG. 5. Temperature dependence of the reciprocal susceptibility (a) and zero-field magnetization (b) for Na₂NiInF₇ and Na₂NiAlF₇. (\bullet) Experimental for Na₂NiInF₇; (+) experimental for Na₂NiAlF₇; (—) calculated curves with J/k = -24 K for Na₂NiInF₇ and J/k = -11 K for Na₂NiAlF₇.

sented; the values of σ_0 have been obtained by extrapolating down to H = 0 the $\sigma = f(H)$ curves. The weak ferromagnetic component reaches 0.027 μ_B at 2 K for Na₂Ni InF₇ and 0.15 μ_B for Na₂NiAlF₇; such a behavior can be correlated with a slightly canted antiferromagnetism.

Table IV summarizes selected structural and magnetic data of Ni^{II}-based weberites. It can be noted that for the two antiferromagnetic compounds, namely Na₂NiAlF₇ and Na₂NiInF₇, in which a high temperature susceptibility fitting can be achieved, the J/k intrachain constant seems to be dependent on the bonding Ni-F1-Ni angle, whereas the 3D T_N depends of course on the distance between [NiF₃]³ⁿ⁻_a chains.

Conclusions

Na₂NiInF₇ is a new example of a compound whose structure derives from the "normal" weberite, with parallel Ni(II) chains. In this structure the I-centering disappears because of a tilting difference between the chains on z = 0 and $z = \frac{1}{2}$ levels.

TABLE IV	
Selected Structural and Magnetic Data of Some Ni ^{II} -Based V	Veberites

	Ni–Ni intrachain distance (Å)	Ni–Ni interchain distance (Å)	Intrachain Ni-F1-Ni bond angle (°)	T _N (K)	Intrachain J/k (K)	Reference
Na ₂ NiAlF ₇	3.66	6.15	135	11	_	23
No NiFoF	3 617	6 26	123.0	12 Ferrim	-11 ordering	a 5 13
INa ₂ INIFCF7	5.017	0.30	135.7	$T_{\rm C} = 88 \ {\rm K}$		5, 15
Na ₂ NiInF ₇	3.678	6.39	141.1	9	-24	а

^a This work.

Such a feature can be correlated with the presence of a large trivalent cation in the octahedra connecting the chains. As a result a peculiar octahedral coordination (In-F = 2.083 Å) with a seventh further fluorine atom at 2.730 Å has been found for the indium atoms.

The structure determination of Na_2Ni InF₇, therefore, provides a new example of the large variety of space groups in which weberite compounds may crystallize. Investigations on new copper weberites, Na_2Cu GaF₇ and Na_2CuInF_7 , containing diamagnetic trivalent cations are also in progress (24).

References

- *l*. A. BYSTRÖM, Ark. Kemi Mineral. Geol. **18**(10), 1 (1944).
- R. COSIER, A. WISE, A. TRESSAUD, J. GRANNEC, R. OLAZCUAGA, AND J. PORTIER, *C.R. Acad. Sci.* 271, 142 (1970).
- 3. A. TRESSAUD, J. M. DANCE, J. PORTIER, AND P. HAGENMULLER, *Mater. Res. Bull.* 9, 1219 (1974).
- 4. G. GUISEPPETTI AND C. TADINI, Tschermaks Mineral. Petrogr. Mitt. 25, 57 (1978).
- 5. R. HAEGELE, W. VERSCHAREN, D. BABEL, J. M. DANCE, AND A. TRESSAUD, J. Solid State Chem. 24, 77 (1978).
- 6. O. KNOP, T. S. CAMERON, AND K. JOCHEM, J. Solid State Chem. 43, 213 (1982).
- Y. LALIGANT, G. FEREY, G. HEGER, AND J. PANNETIER, Z. Anorg. Allg. Chem. 553, 163 (1987).
- W. VERSCHAREN AND D. BABEL, J. Solid State Chem. 24, 405 (1978).

- 9. G. COURBION, G. FEREY, H. HOLLER, AND D. BABEL, Eur. J. Solid State Inorg. Chem. 25, 435 (1988).
- 10. S. KUMMER, W. MASSA, AND D. BABEL, Z. Naturforsch. B 43, 694 (1988).
- J. RENAUDIN, M. LEBLANC, G. FEREY, A. DE KOZAK, AND M. SAMOUËL, J. Solid State Chem. 73, 603 (1988).
- O. V. YAKUBOVICH, V. S. URUSOV, G. FRENZEN, W. MASSA, AND D. BABEL, Eur. J. Solid State Inorg. Chem. 27, 467 (1990).
- 13. Y. LALIGANT, Y. CALAGE, G. HEGER, J. PANNETIER, AND G. FEREY, J. Solid State Chem. 78, 66 (1989).
- 14. G. M. SHELDRICK, "SHELX-76: Program for Crystal Structure Determination," Cambridge (1976); "SHELXS-86: Program for Crystal Structure Solution," Gottingen (1986).
- "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974) (Present distributor: Kluwer Academic, Dordrecht).
- C. K. JOHNSON, "ORTEP: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustration," Oak Ridge, TN (1965); Ulm, Germany (1973).
- 17. R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).
- 18. R. E. SCHMIDT, Thesis, Marburg, Germany (1985).
- 19. R. X. FISCHER, J. Appl. Crystallogr. 18, 258 (1985).
- J. M. DANCE, J. GRANNEC, C. JACOBONI, AND A. TRESSAUD, C.R. Acad. Sci. 279, 601 (1974).
- 21. M. E. FISHER, Am. J. Phys. 32, 343 (1964).
- 22. C. Y. WENG, Ph.D. thesis, Carnegie Mellon University, Pittsburgh (1969).
- 23. G. HEGER, Int. J. Magn. 5, 119 (1973).
- 24. N. RUCHAUD, J. GRANNEC, P. GRAVEREAU, P. NUÑEZ, A. TRESSAUD, W. MASSA, G. FRENZEN, AND D. BABEL, Z. Anorg. Allg. Chem., to appear (1991).